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1 Introduction 
Frame theory has a diverse array of applications in 
many scientific fields, like physics, chemistry, 
biology, medicine, data compression, signal 
processing , and others that’s why the global interest 
in it is growing at a rapid pace. Many monographs 
and review articles of different mathematicians have 
been dedicated to this theory.  More detailed can be 
found in monographs by R.Young [1], Daubechies I. 
[2], O.Christensen [3-6], Chui Ch. [7] , a review 
article of Dremin I.M., Ivanov O.V., Nechitailo 
V.A.  [8], etc. This theory dates back to the seminal 
paper by R.J.Duffin and A.C.Schaeffer   [9]. Later, 
there appeared various generalizations of the 
concept of frame. Subsequently, it has evolved in 
different directions. Naturally is scientifically 
interesting methods of acquisition of a frame. There 
are various methods of education frames. One of 
these methods is a perturbation method. Many 
results have been obtained using this method in the 
context of classical Paley-Wiener theorem on the 
Riesz basicity  of  perturbed system of exponents , 
the results on sustainability properties of the frame 
are  obtained in a series of papers by   O.Christensen 
(respect to  these results can be found in [3-6] ). 

In the context of applications to various 
branches of mathematics, for example, such as 
theory of partial differential equations, theory of 
approximations, harmonic analysis, etc., there arose 
great interest in nonclassical function spaces. As 
examples of such spaces, we can mention Lebesgue 
space with variable summability index, Morrey 
space, grand Lebesgue space, etc. A lot of articles, 
reviews and monographs have been dedicated to 
these spaces (see, e.g., F. Xianling, Z. Dun [22], I.I. 

Sharapudinov [23], C.T. Zorko [24],  C.B. Morrey 
[25], D.V. Cruz-Uribe, Fiorenza A. [26], Adams 
[27], S. Samko [28], Kokilashvili [29], R.E.Castilo, 
H.Rafeiro [30], H. A. Fiorenza, G. E. Karadzhov 
[31], B.T. Bilalov, T.B.Gasymov, A.A. Guliyeva 
[32] etc.). Along with this, of course, one has to 
study approximation matters in suchlike spaces. 
Approximation matters have been (and are being) 
relatively well studied in generalized Lebesgue 
spaces by I.I. Sharapudinov [33], D. Israfilov,  
Tozman N. P.  [34, 35], Bilalov B. T., Guseynov 
Z.G. [36], etc. The situation is different with the 
case of Morrey-type and grand Lebesgue spaces, 
and only recently the approximation matters began 
to be studied in these spaces. Many problems in this 
field still remain to be solved. Apparently the works 
by D. Israfilov, Tozman N. P. [34, 35], B.T. Bilalov, 
A.A. Guliyeva [37], have been pioneers in this field. 

Note that the grand-Lebesgue spaces )pL  first 
is  appeared in the paper [38], where the 
integrability problem  of the Jacobian was treated 
under  a minimal hypothesis. In particular, it is 

shown that  if n
n Rfff  :),...,( 1 , where   is 

an open subset in ,2, nRn then  the Jacobian 

determinant of f  belongs to the class )(locL  
provided that ,)nLg  where 

 1:)(sup:)(  nSyyxDfxg , 

where 1nS  is a unit boll in 1nR .    
Feichtinger and Grochenig (see e.g. [18-20]) 

proved that the group-theoretic setup even allows us 
to obtain series expansions in a large scale of 
Banach spaces, a result which leads Grochenig to 
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define frames in Banach spaces. By removing some 
of the conditions we obtain p -frames, first studied 
separately by Aldroubi,  Sun and Tang [21]. 
So, this paper  is organized as follows. It consists of 
three sections. The first section is an introduction. 
This section provides a brief history of the 
emergence of frame theory. Recently, there has been 
an increase in interest in studying various problems 
of mathematics in non-standard function spaces, and 
the relevance of the topics discussed in the article is 
substantiated. The second partsection is devoted to 
the necessary concepts and facts that we use in this 

paper. The grand-Lebesgue space   baLp ,)  is 
defined. This space is non-separable. Based on the 
shift operator, a separable subspace 

   baLbaG pp ,, ))   is determined in which 
continuous functions are dense. The concepts of 
frame and atomic decomposition are defined. The 
third section  is devoted to the main results. It 
considers a unary system of a general form and, 
following this system, a double system is 
determined. It is proved that if a unary system is an 

atomic decomposition of  aG p ,0) , then a double 
system is also an atomic decomposition of 

 aaG p ,)  . It should be noted that similar 
relationships were previously established with 
respect to the basis properties (completeness, 
minimality, basicity ) of power systems in [10-15]. 
 
 

2 Needful  Information 

 
We will use the standard notation. N  will be a 
set of all positive integers; Z  will be a set of all 
integers;   NZ  0  ; C  will be the set of 
complex numbers ; Banach space will be 
referred to as B -space;  X  will stand for a 
space conjugated to X ;  

X
  will denote a 

norm in the space X ; K  is a field of scalars; 

nk  will be the Kronecker symbol;   Throughout 

this paper y


 will denote   Nnnyy 


.  mesM  

will denote the Lebesgue measure of the set  
M . In the sequel, we will assume that    K   is 
some B- space of sequence of scalars. Such 
space will be called K -space. 

Let us  give definitions for grand 
Lebesgue spaces. We also state some of their 
properties and auxiliary facts to be used later. 
By );() baLp ,  p1 , we denote a grand 

Lebesgue space of measurable functions f  on 
];[ ba  with the norm 

  .)(sup

1

10
,) 

























 pb

a

p

p
baL

dttf
ab

f p

The following inclusions hold 
);();();( ) baLbaLbaL ppp  , 

 p1 . 
Obviously, the space of infinitely differentiable 
functions ];[ baC  is embedded in );() baLp . 

The space );() baLp  with the norm  baLpf
,)  is a 

non-separable Banach space. The space 
];[0 baC  of infinitely differentiable finite 

functions on ];[ ba  is not dense in );() baLp . 
The validity of this assertion follows from the 
statement below. 

Statement 2.1 [9]. The subspace 

];[0 baC  consists of the functions );() baLf p  

which satisfy the condition  

0)(lim
0






b

a

p
dttf




 ,             (2.1) 

where ];[0 baC  is a closure of ];[0 baC  in 

);() baLp .  

 Extending every function );() baLf p  
to the whole axis R  and assuming 0)( tf , 

];[\ baRt , consider the set );(
~ ) baG p  of 

functions );() baLf p  which satisfy the 
condition  

  0)()(
,) 
baLpff  , 0 . 

It is clear that );(
~ ) baG p  is a linear manifold in 

);() baLp . Let );() baG p  be its closure in 

);() baLp . The space ];[0 baC  is dense in 

);() baG p . Every function );() baGf p  
satisfies (2.1). In fact, it is easy to show that 
(2.1) is true for every function ];[0 baCf  , 

and therefore, it is true for every function 
);() baGf p .  

Let’s recall some concepts and facts 
from the theory of frames. First, let us give a 
definition of atomic decomposition.  
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Definition 2.1. Let X  be a B-space and 
K  be a K -space. Let   ,Xf Nkk   
  *Xg Nkk  . Then     NkkNkk fg  ,   is an 

atomic decomposition of X   with respect to K  
if : 
(i)    Xffg Nkk  ,K ; 

(ii) 0,  BA : 

   ,
K XNkkX

fBfgfA   Xf  ; 

(iii)  





1

,
k

kk Xfffgf . 

 Accept the definition of K - Besselian.  
 Let  X  be B -space on the field of K  
and    Xx Nnn  be a minimal system with a 

conjugate   ** Xx Nnn  . Let K  be some K -

space. 
 We will say that the system     Nnnx    has 

the  K -Besselian, if     Xxxx Nnn  ,* K .  

 About these and other facts one can see 
the works [16;17]. 

The concept of frame is a generalization 
of the concept of atomic decomposition. 

Definition 2.2. Let X be a B-space and 
K  be a K -space.  Let    *Xg Nkk  , and 

XS K: be some bounded operator. Then 
  Sg Nkk ,  forms a Banach  frame  for X  

with respect to K  if : 
(i)    Xffg Nkk  ,K ; 

(ii) 0,  BA : 

   ,
K XNkkX

fBfgfA   Xf  ; 

(iii)     XfffgS Nkk  , . 

A  and B  will be called frame bounds. 
The following statement is true. 
Statement 2.2 [5].   Let X  be a B-space 

and K  be a K -space with a canonical basis 
  Nnn  , where   Nkknn   . Let  

  *Xg Nkk   and  XLS K; . Then the 

following statements are equivalent to each 
other: 
(i)   Sg Nkk ,  forms a Banach frame for X  

with respect to K . 
(ii)       NkkNkk Sg  ,  is an atomic 

decomposition of X  with respect to K . 

Let  X  be B -space, K  be some  K -
space and    Xxx  

;  be some double 

system, where    Nnnxx 
 


. Let   *; X 


.  

Under an atomic decomposition 
     xx


;;;  of  X with respect to K   we 

will mean the followingе: 
i) The following expansion holds 

      Xxxxxxx
n

nnnn  




 ,
1

 ; 

ii) :0;  BA   

     
XNnnNnnX

xxxxA  





KK
 . 

We will also need the following 
 Lemma 2.1. Let  ,,) baGf p   p1

,  be an arbitrary function. Then 

0
)


pEf , as ,0E  where   baE ,  is an 

arbitrary interval, E  is the length of this 

interval.  
 Indeed, let  baGf p ,)  be an arbitrary 
function and 0  be an arbitrary number. 
Since,  baC ,   is dense in  baG p ,) , then it is 

clear that      
baLpgfbaCg

,):, . If E  is 

sufficiently small we have  
   )))) pppp LLELELE gfggff 



 




2

2
sup

1
1

10
) 






 






p
p

p
LE Egg p . 

 From the arbitrariness of   we obtain what is 
required.   

 We define the space   baG p ,)

  

associated with   baG p ,)

  and briefly denote  it 

by G  .  Let S  be unit ball in  baG p ,) , i.e.  

  1:,
)

) 
p

p fbaGfS . 

G   is a Banach space of  measurable functions 
on  ba,  for which the norm   

 




b

aSf
G

fgdtg sup , 

is finite. 
Now we state the following known (see, 

for example, [19]) 
 Proposition 2.1[19]. The conjugate 
space X  to a Banach space of functions X  is 
isometrically isomorphic to the associated 
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space X   if and only if  X   has an absolutely 
continuous norm. 

Taking into account Lemma 2.1, in 
particular, from this statement we obtain that 
M   is isometrically isomorphic to the conjugate  
to the  space  baG p ,)

 for  p1 ,  and  

denote it by     baGM p ,) . 
We will also need the following 

completeness criterion of a system in a Banach 
space X .  

 Proposition 2.2. System    Xx Nnn    in 

Banach space X  is complete if and if  only the zero 
functional cancels it, i.e. from the relation  

  ,,0: NnxvXv n   it follows that  0v , 

where  xv  is   value of functional  Xv  at the 

point x . 
 

3 Main results 

 
Let us consider the unary  system of the form  

        Nntttx nnn  ,  , 

where   Cann ,0:;  are complex-valued func-

tions.  Using the functions  n  and  n   will 

determine the new system on a segment  aa, . 
Then we will establish the connection between an 
atomic decomposition and frameness of these 
systems.   

So, let us form the new system  

       
   








,0,,

,,0,

att

att
t

n

n
n 


 

and put 
       aattt nn ,,  . 

Let     aLqn ,0
 
be some system. Similarly we 

define  

      
   















,0,,

,,0,

att

att
t

k

k
k




 

and let 

        aatttth kkk ,,
2

1
  .  (3.1)                                             

It is easy to see  that the following relations are 
valid  which will be used in the obtaining  of the 
main results  

         aatthththth kkkk ,,,   . 

We will consider the double  system   


;  
and establish connections  between the atomic 

decomposition of this system and unary  systems 

 x


 in grand-Lebesgue spaces )pG . 
The following theorem is true. 

 Theorem 3.1.  Let   x


;   and   x


;  

be  atomic decompositions of  aG p ,0)  with respect 

to some  K -space  K . Then      


;;; hh   is 

an atomic decomposition of    aaG p ,)    with 

respect to  K , where  h


 determined by (3.1). 

Proof.  Take   aaGf p ,)  . Assume 

     xfSm  

            ,
1
 
 




















m

n

a

a

nn

a

a

nn xdtthtfxdtthtf  

Nm . 
We have  

         



aaLm

aa
m pxfxfSI

,
,

)

            
 














m

n

a

a

nn

a

a

nn xdtttfxdtttf
1 2

1  

     


 
a

a

nn xdtttf

       
 

.

,) aaL

a

a

nn

p

xfxdtttf



 





   

Assume the following notation 

                  




a

nn

a

a

nnn xdtttftfxdtttfI
0

1  , 

                ,
0

2   




a

nn

a

a

nnn xdtttftfxdtttfI  , 

                ,
0

3   




a

nn

a

a

nnn xdtttftfxdtttfI 

                .
0

4   




a

nn

a

a

nnn xdtttftfxdtttfI 

Accepting this notation, consider the following 
individual cases. 

1)  ax ,0 . In this case we have  

                  
a

nnnnn xxdtttftfII
0

31   

             
a

nnn xxdtttftf
0



         
a

nn xdtxttftf
0

 , 
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                  
a

nnnnn xxdtttftfII
0

42   

         
a

nn xxdtttftf
0

 . 

Considering  these expressions, we obtain 

          



 



m

n
nn

a
m

xfxf
III

1

31,0

22

1  

        
 





 aL
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On the other hand we  have 
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where    AAA ;min . 
 Theorem is proved.  
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